miércoles, 2 de junio de 2010

CICLO DEL AZUFRE


El azufre forma parte de incontables compuestos orgánicos; algunos de ellos llegan a formar parte de proteínas. Las plantas y otros productores primarios lo obtienen principalmente en su forma de ion sulfato (SO4 -2). Estos organismos lo incorporan a las moléculas de proteína, y de esta forma pasa a los organismos del nivel trófico superior. Al morir los organismos, el azufre derivado de sus proteínas entra en el ciclo del azufre y llega a transformarse para que las plantas puedan utilizarlos de nuevo como ion sulfato.Los intercambios de azufre, principalmente en su forma de bióxido de azufre SO2, se realizan entre las comunidades acuáticas y terrestres, de una manera y de otra en la atmósfera, en las rocas y en los sedimentos oceánicos, en donde el azufre se encuentra almacenado. El SO2 atmosférico se disuelve en el agua de lluvia o se deposita en forma de vapor seco. El reciclaje local del azufre, principalmente en forma de ion sulfato, se lleva a cabo en ambos casos. Una parte del sulfuro de hidrógeno (H2S), producido durante el reciclaje local del sulfuro, se oxida y se forma SO2.La contaminación atmosférica procedente de la actividad humana representa una introducción de este elemento de gran importancia
Características principales
Este no metal tiene un color amarillento, amarronado o naranja, es blando, frágil, ligero, desprende un olor característico a huevo podrido al combinarse con hidrógeno y arde con llama de color azul, desprendiendo dióxido de azufre. Es insoluble en agua pero se disuelve en disulfuro de carbono. Es multivalente, y son comunes los estados de oxidación -2, +2, +4 y +6.
En todos los estados (sólido, líquido y gaseoso) presenta formas alotrópicas cuyas relaciones no son completamente conocidas. Las estructuras cristalinas más comunes son el octaedro ortorrómbico (azufre α) y el prisma monoclínico (azufre β), siendo la temperatura de transición de una a otra de 96 °C; en ambos casos el azufre se encuentra formando moléculas de S8 con forma de anillo, y es la diferente disposición de estas moléculas la que provoca las distintas estructuras cristalinas. A temperatura ambiente, la transformación del azufre monoclínico en ortorrómbico, es más estable y muy lenta.
Al fundir el azufre, se obtiene un líquido que fluye con facilidad formado por moléculas de S8. Sin embargo, si se calienta, el color se torna marrón algo rojizo, y se incrementa la viscosidad. Este comportamiento se debe a la ruptura de los anillos y la formación de largas cadenas de átomos de azufre, que pueden alcanzar varios miles de átomos de longitud, que se enredan entre sí disminuyendo la fluidez del líquido; el máximo de la viscosidad se alcanza en torno a los 200 °C. Enfriando rápidamente este líquido viscoso se obtiene una masa elástica, de consistencia similar a la de la goma, denominada «azufre plástico» (azufre γ) formada por cadenas que no han tenido tiempo de reordenarse para formar moléculas de S8; transcurrido cierto tiempo la masa pierde su elasticidad cristalizando en el sistema rómbico. Estudios realizados con rayos X muestran que esta forma amorfa puede estar constituida por moléculas de S8 con estructura de hélice espiral.
En estado vapor también forma moléculas de S8, pero a 780 °C ya se alcanza el equilibrio con moléculas diatómicas y por encima de aproximadamente 1800 °C la disociación es completa y se encuentran átomos de azufre.
Además de en trozos, barras o polvo grueso, existe en el mercado una presentación en forma de polvo muy fino, llamada "Flor de azufre", que puede obtenerse por precipitación en medio líquido o por sublimación de su vapor sobre una placa metálica fría.
Abundancia y obtención


Fotografía de azufre fundido (foto superior) y de azufre ardiendo (foto inferior).
El azufre es un elemento muy abundante en la corteza terrestre, se encuentra en grandes cantidades combinado en forma de sulfuros (pirita, galena) y de sulfatos (aljez). En forma nativa se encuentra en las cercanías de aguas termales, zonas volcánicas y en minas de cinabrio, galena, esfalerita y estibina, y en Luisiana (Estados Unidos, primer productor mundial) se extrae mediante el proceso Frasch consistente en inyectar vapor de agua sobrecalentado para fundir el azufre que posteriormente es bombeado al exterior utilizando aire comprimido.También se obtiene separándolo de gas natural, si bien su obtención anteriormente era a partir de depósitos de azufre puro impregnado en cenizas volcánicas (Italia, y más recientemente Argentina).
También está presente, en pequeñas cantidades, en combustibles fósiles (carbón y petróleo) cuya combustión produce dióxido de azufre que combinado con agua produce la lluvia ácida; para evitarlo las legislaciones de los países industrializados exigen la reducción del contenido de azufre de los combustibles, constituyendo este azufre, posteriormente refinado, un porcentaje importante del total producido en el mundo. También se extrae del gas natural que contiene sulfuro de hidrógeno que una vez separado se quema para obtener azufre:
2 H2S + O2 → 2 S + 2 H2O
El color distintivo de Ío, la luna volcánica de Júpiter, se debe a la presencia de diferentes formas de azufre en estado líquido, sólido y gaseoso. El azufre se encuentra, además, en varios tipos de meteoritos, y se cree que la mancha oscura que puede observarse cerca del cráter lunar Aristarco puede ser un depósito de azufre.

Ciclo del fósforo


El ciclo del fósforo es un ciclo biogeoquímico, describe el movimiento de este elemento en su circulación en el ecosistema.
Los seres vivos toman el fósforo, P, en forma de fosfatos a partir de las rocas fosfatadas, que mediante meteorización se descomponen y liberan los fosfatos. Éstos pasan a los vegetales por el suelo y, seguidamente, pasan a los animales. Cuando éstos excretan, los descomponedores actúan volviendo a producir fosfatos.
Una parte de estos fosfatos son arrastrados por las aguas al mar, en el cual lo toman las algas, peces y aves marinas, las cuales producen guano, el cual se usa como abono en la agricultura ya que libera grandes cantidades de fosfatos; los restos de las algas, peces y los esqueletos de los animales marinos dan lugar en el fondo del mar a rocas fosfatadas, que afloran por movimientos orogénicos.
De las rocas se libera fósforo y en el suelo, donde es utilizado por las plantas para realizar sus funciones vitales. Los animales obtienen fósforo al alimentarse de las plantas o de otros animales que hayan ingerido. En la descomposición bacteriana de los cadáveres, el fósforo se libera en forma de ortofosfatos (H3PO4) que pueden ser utilizados directamente por los vegetales verdes, formando fosfato orgánico (biomasa vegetal), la lluvia puede transportar este fosfato a los mantos acuíferos o a los océanos. El ciclo del fósforo difiere con respecto al del carbono, nitrógeno y azufre en un aspecto principal. El fósforo no forma compuestos volátiles que le permitan pasar de los océanos a la atmósfera y desde allí retornar a tierra firme. Una vez en el mar, solo existen dos mecanismos para el reciclaje del fósforo desde el océano hacia los ecosistemas terrestres. Uno es mediante las aves marinas que recogen el fósforo que pasa a través de las cadenas alimentarias marinas y que pueden devolverlo a la tierra firme en sus excrementos. Además de la actividad de estos animales, hay la posibilidad del levantamiento geológico de los sedimentos del océano hacia tierra firme, un proceso medido en miles de años.
El hombre también moviliza el fósforo cuando explota rocas que contienen fosfato.
La proporción de fósforo en la materia viva es relativamente pequeña, pero el papel que desempeña es vital. Es componente de los ácidos nucleicos como el ADN. Muchas sustancias intermedias en la fotosíntesis y en la respiración celular están combinadas con el fósforo, y los átomos de fósforo proporcionan la base para la formación de los enlaces de alto contenido de energía del ATP, se encuentra también en los huesos y los dientes de animales, incluyendo al ser humano. Este elemento en la tabla periódica se denomina como "P".
La mayor reserva de fósforo está en la corteza terrestre y en los depósitos de rocas marinas.

Ciclo del Nitrógeno


Este es posiblemente uno de los ciclos más complicados, ya que el N se encuentra en varias formas y porque los organismos son los responsables de las interconversiones. Recuerden que el N es uno de los constituyentes de los aminoácidos y proteínas del cuerpo. Las proteínas constituyen la piel y los músculos, además de otras estructuras del cuerpo. Todas las enzimas son proteínas, responsables de todas las reacciones químicas del cuerpo. Teniendo esto en cuenta, es fácil notar la importancia del N y su ciclo.
El principal reservorio de nitrógeno es la atmósfera, con 78%. Este nitrógeno gaseoso está compuesto de dos átomos de nitrógeno unidos, el N2 es un gas inerte, y se necesita una gran cantidad de energía para romper esta unión y combinarlo con otros elementos como el carbono y el oxígeno. Esta ruptura puede hacerse por dos mecanismos: las descargas eléctricas y la fijación fotoquímica proveen suficiente energía para romper la unión del nitrógeno y unirse a tres átomos de Oxígeno para formar nitratos (NO3-). Este procedimiento es reproducido en las plantas productoras de fertilizantes.
La segunda forma de fijación del nitrógeno es llevada a cabo por bacterias quienes usan enzimas especiales en lugar de la luz solar o las descargas eléctricas. Entre estas bacterias se encuentran las pueden vivir libres en el suelo, aquellas en simbiosis con raíces de ciertas plantas (Leguminosas) y las cianobacterias fotosintéticas (las antiguas "algas verde-azuladas") que viven libres en el agua. Las tres fijan N, tanto como nitratos (NO3-) o como amonio (NH3). Las plantas toman los nitratos y los convierten en aminoácidos, los cuales pasan a los animales que las consumen. Cuando las plantas y animales mueren (o liberan sus desechos) el nitrógeno retorna al suelo. La forma más común en que el nitrógeno regresa al suelo es como amonio. El amonio es tóxico, pero afortunadamente, existen bacterias nitrificantes (Nitrosomonas y Nitrosococcus) que oxidan el amonio a nitritos, con dos oxígenos. Otro tipo de bacteria (Nitrobacter) continúa la oxidación del nitrito (NO2-) a nitrato (NO3-) el cual es absorbido por las plantas que completan el ciclo.

Ciclo biogeoquímicos


Se denomina ciclo biogeoquímico al movimiento de cantidades masivas de carbono, nitrógeno, oxígeno, hidrógeno, calcio, sodio, sulfuro, fósforo y otros elementos entre los seres vivos y el ambiente (atmósfera y sistemas acuáticos) mediante una serie de procesos de producción y descomposición. En la biosfera la materia no es ilimitada de manera que su reciclaje es un punto clave en el mantenimiento de la vida en la Tierra; de otro modo, los nutrientes se agotarían y la vida desaparecería.
Un elemento químico o molécula necesario para la vida de un organismo, se llama nutriente o nutrimento. Los organismos vivos necesitan de 30 a 40 elementos químicos, donde el número y tipos de estos elementos varía en cada especie. Los elementos requeridos por los organismos en grandes cantidades se denominan:
Macronutrientes: carbono, oxígeno, hidrógeno, nitrógeno, fósforo, azufre, calcio, magnesio y potasio. Estos elementos y sus compuestos constituyen el 97% de la masa del cuerpo humano, y más de 95% de la masa de todos los organismos.
Micronutrientes. Son los 30 ó más elementos requeridos en cantidades pequeñas (hasta trazas): hierro, cobre, zinc, cloro, yodo
La mayor parte de las sustancias químicas de la tierra no están en formas útiles para los organismos. Pero, los elementos y sus compuestos necesarios como nutrientes, son reciclados continuamente en formas complejas a través de las partes vivas y no vivas de la biosfera, y convertidas en formas útiles por una combinación de procesos biológicos, geológicos y químicos.
El ciclo de los nutrientes desde el biotopo (en la atmósfera, la hidrosfera y la corteza de la tierra) hasta la biota, y viceversa, tiene lugar en los ciclos biogeoquímicos (de bio: vida, geo: en la tierra), ciclos, activados directa o indirectamente por la energía solar, incluyen los del carbono, oxígeno, nitrógeno, fósforo, azufre y del agua (hidrológico). Así, una sustancia química puede ser parte de un organismo en un momento y parte del ambiente del organismo en otro momento. Por ejemplo, una molécula de agua ingresada a un vegetal, puede ser la misma que pasó por el organismo de un dinosaurio hace millones de años.
Gracias a los ciclos biogeoquímicos, los elementos se encuentran disponibles para ser usados una y otra vez por otros organismos; sin estos ciclos los seres vivos se extinguirían por esto son muy importantes.
El término ciclo biogeoquímico se deriva del movimiento cíclico de los elementos que forman los organismos biológicos (bio) y el ambiente geológico (geo) e intervienen en un cambio químico.
Hay dos tipos de ciclos biogeoquímicos, que están interconectados:
Gaseoso. En el ciclo gaseoso, los nutrientes circulan principalmente entre la atmósfera y los organismos vivos. En la mayoría de estos ciclos los elementos son reciclados rápidamente, con frecuencia en horas o días. Los principales ciclos gaseosos son los del carbono, oxígeno y nitrógeno.
Sedimentario. También se estudian los ciclos biogeoquímicos de los contaminantes.